Cargando…
K-th Nearest Neighbor (KNN) Entropy Estimates of Complexity and Integration from Ongoing and Stimulus-Evoked Electroencephalographic (EEG) Recordings of the Human Brain
Information-theoretic measures for quantifying multivariate statistical dependence have proven useful for the study of the unity and diversity of the human brain. Two such measures–integration, I(X), and interaction complexity, C(I)(X)–have been previously applied to electroencephalographic (EEG) si...
Autor principal: | Trujillo, Logan T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514170/ https://www.ncbi.nlm.nih.gov/pubmed/33266777 http://dx.doi.org/10.3390/e21010061 |
Ejemplares similares
-
Compressed kNN: K-Nearest Neighbors with Data Compression
por: Salvador–Meneses, Jaime, et al.
Publicado: (2019) -
QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases
por: Saini, Indu, et al.
Publicado: (2013) -
Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs)()
por: Steenwijk, Martijn D., et al.
Publicado: (2013) -
ITP-KNN: Encrypted Video Flow Identification Based on the Intermittent Traffic Pattern of Video and K-Nearest Neighbors Classification
por: Liu, Youting, et al.
Publicado: (2020) -
Comparing distance metrics for rotation using the k-nearest neighbors algorithm for entropy estimation
por: Huggins, David J
Publicado: (2014)