Cargando…
Uncertainty Assessment of Hyperspectral Image Classification: Deep Learning vs. Random Forest
Uncertainty assessment techniques have been extensively applied as an estimate of accuracy to compensate for weaknesses with traditional approaches. Traditional approaches to mapping accuracy assessment have been based on a confusion matrix, and hence are not only dependent on the availability of te...
Autores principales: | Shadman Roodposhti, Majid, Aryal, Jagannath, Lucieer, Arko, Bryan, Brett A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514187/ https://www.ncbi.nlm.nih.gov/pubmed/33266794 http://dx.doi.org/10.3390/e21010078 |
Ejemplares similares
-
A Novel Rule-Based Approach in Mapping Landslide Susceptibility
por: Roodposhti, Majid Shadman, et al.
Publicado: (2019) -
Retrieval of Hyperspectral Information from Multispectral Data for Perennial Ryegrass Biomass Estimation
por: Togeiro de Alckmin, Gustavo, et al.
Publicado: (2020) -
Real-Time Vehicle Classification and Tracking Using a Transfer Learning-Improved Deep Learning Network
por: Neupane, Bipul, et al.
Publicado: (2022) -
Mapping the in situ microspatial distribution of ice algal biomass through hyperspectral imaging of sea-ice cores
por: Cimoli, Emiliano, et al.
Publicado: (2020) -
Mapping Sub-Antarctic Cushion Plants Using Random Forests to Combine Very High Resolution Satellite Imagery and Terrain Modelling
por: Bricher, Phillippa K., et al.
Publicado: (2013)