Cargando…

Approximating Ground States by Neural Network Quantum States

Motivated by the Carleo’s work (Science, 2017, 355: 602), we focus on finding the neural network quantum statesapproximation of the unknown ground state of a given Hamiltonian H in terms of the best relative error and explore the influences of sum, tensor product, local unitary of Hamiltonians on th...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Ying, Zhang, Chengyang, Cao, Huaixin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514192/
https://www.ncbi.nlm.nih.gov/pubmed/33266798
http://dx.doi.org/10.3390/e21010082
Descripción
Sumario:Motivated by the Carleo’s work (Science, 2017, 355: 602), we focus on finding the neural network quantum statesapproximation of the unknown ground state of a given Hamiltonian H in terms of the best relative error and explore the influences of sum, tensor product, local unitary of Hamiltonians on the best relative error. Besides, we illustrate our method with some examples.