Cargando…
Approximating Ground States by Neural Network Quantum States
Motivated by the Carleo’s work (Science, 2017, 355: 602), we focus on finding the neural network quantum statesapproximation of the unknown ground state of a given Hamiltonian H in terms of the best relative error and explore the influences of sum, tensor product, local unitary of Hamiltonians on th...
Autores principales: | Yang, Ying, Zhang, Chengyang, Cao, Huaixin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514192/ https://www.ncbi.nlm.nih.gov/pubmed/33266798 http://dx.doi.org/10.3390/e21010082 |
Ejemplares similares
-
Generalization properties of neural network approximations to frustrated magnet ground states
por: Westerhout, Tom, et al.
Publicado: (2020) -
Symmetry-Like Relation of Relative Entropy Measure of Quantum Coherence
por: Zhang, Chengyang, et al.
Publicado: (2020) -
Hybrid Quantum-Classical Neural Network for Calculating Ground State Energies of Molecules
por: Xia, Rongxin, et al.
Publicado: (2020) -
Ground state approximations in lattice gauge theory
por: Crispim-Romão, J, et al.
Publicado: (1982) -
Rayleigh approximation to ground state of the Bose and Coulomb glasses
por: Ryan, S. D., et al.
Publicado: (2015)