Cargando…
Fault Diagnosis of Rolling Element Bearings with a Two-Step Scheme Based on Permutation Entropy and Random Forests
This study presents a two-step fault diagnosis scheme combined with statistical classification and random forests-based classification for rolling element bearings. Considering the inequality of features sensitivity in different diagnosis steps, the proposed method utilizes permutation entropy and v...
Autores principales: | Xue, Xiaoming, Li, Chaoshun, Cao, Suqun, Sun, Jinchao, Liu, Liyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514207/ https://www.ncbi.nlm.nih.gov/pubmed/33266812 http://dx.doi.org/10.3390/e21010096 |
Ejemplares similares
-
Fault Diagnosis for Rolling Element Bearings Based on Feature Space Reconstruction and Multiscale Permutation Entropy
por: Zhang, Weibo, et al.
Publicado: (2019) -
Use of Composite Multivariate Multiscale Permutation Fuzzy Entropy to Diagnose the Faults of Rolling Bearing
por: Yuan, Qiang, et al.
Publicado: (2023) -
Hierarchical Amplitude-Aware Permutation Entropy-Based Fault Feature Extraction Method for Rolling Bearings
por: Li, Zhe, et al.
Publicado: (2022) -
A Rolling Bearing Fault Classification Scheme Based on k-Optimized Adaptive Local Iterative Filtering and Improved Multiscale Permutation Entropy
por: Zhang, Yi, et al.
Publicado: (2021) -
Optimized Adaptive Local Iterative Filtering Algorithm Based on Permutation Entropy for Rolling Bearing Fault Diagnosis
por: Lv, Yong, et al.
Publicado: (2018)