Cargando…
Simple Stopping Criteria for Information Theoretic Feature Selection
Feature selection aims to select the smallest feature subset that yields the minimum generalization error. In the rich literature in feature selection, information theory-based approaches seek a subset of features such that the mutual information between the selected features and the class labels is...
Autores principales: | Yu, Shujian, Príncipe, José C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514210/ https://www.ncbi.nlm.nih.gov/pubmed/33266815 http://dx.doi.org/10.3390/e21010099 |
Ejemplares similares
-
System parameter identification: information criteria and algorithms
por: Chen, Badong, et al.
Publicado: (2013) -
Information-Theoretical Criteria for Characterizing the Earliness of Time-Series Data
por: Lemus, Mariano, et al.
Publicado: (2019) -
Low-precision feature selection on microarray data: an information theoretic approach
por: Morán-Fernández, Laura, et al.
Publicado: (2022) -
Information Theoretic Multi-Target Feature Selection via Output Space Quantization †
por: Sechidis, Konstantinos, et al.
Publicado: (2019) -
New stopping criteria for iterative root finding
por: Nikolajsen, Jorgen L.
Publicado: (2014)