Cargando…
State Clustering of the Hot Strip Rolling Process via Kernel Entropy Component Analysis and Weighted Cosine Distance
In the hot strip rolling process, many process parameters are related to the quality of the final products. Sometimes, the process parameters corresponding to different steel grades are close to, or even overlap, each other. In reality, locating overlap regions and detecting products with abnormal q...
Autores principales: | Wang, Chaojun, He, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514240/ http://dx.doi.org/10.3390/e21101019 |
Ejemplares similares
-
Weighted Kernel Entropy Component Analysis for Fault Diagnosis of Rolling Bearings
por: Zhou, Hongdi, et al.
Publicado: (2017) -
Quality-Related Process Monitoring and Diagnosis of Hot-Rolled Strip Based on Weighted Statistical Feature KPLS
por: Guo, Hesong, et al.
Publicado: (2023) -
Optimization of Hot Rolling Scheduling of Steel Strip with High Bending Performance
por: Feng, Chien-Cheng, et al.
Publicado: (2022) -
Image Clustering Algorithm Based on Predefined Evenly-Distributed Class Centroids and Composite Cosine Distance
por: Zhu, Qiuyu, et al.
Publicado: (2022) -
A Gabor-Block-Based Kernel Discriminative Common Vector Approach Using Cosine Kernels for Human Face Recognition
por: Kar, Arindam, et al.
Publicado: (2012)