Cargando…
Machine Learning Predictors of Extreme Events Occurring in Complex Dynamical Systems
The ability to characterize and predict extreme events is a vital topic in fields ranging from finance to ocean engineering. Typically, the most-extreme events are also the most-rare, and it is this property that makes data collection and direct simulation challenging. We consider the problem of der...
Autores principales: | Guth, Stephen, Sapsis, Themistoklis P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514256/ http://dx.doi.org/10.3390/e21100925 |
Ejemplares similares
-
A variational approach to probing extreme events in turbulent dynamical systems
por: Farazmand, Mohammad, et al.
Publicado: (2017) -
Data-assisted reduced-order modeling of extreme events in complex dynamical systems
por: Wan, Zhong Yi, et al.
Publicado: (2018) -
Sequential sampling strategy for extreme event statistics in nonlinear dynamical systems
por: Mohamad, Mustafa A., et al.
Publicado: (2018) -
Using machine learning to predict extreme events in complex systems
por: Qi, Di, et al.
Publicado: (2020) -
Machine learning analysis of extreme events in optical fibre modulation instability
por: Närhi, Mikko, et al.
Publicado: (2018)