Cargando…
Learnability for the Information Bottleneck
The Information Bottleneck (IB) method provides an insightful and principled approach for balancing compression and prediction for representation learning. The IB objective [Formula: see text] employs a Lagrange multiplier [Formula: see text] to tune this trade-off. However, in practice, not only is...
Autores principales: | Wu, Tailin, Fischer, Ian, Chuang, Isaac L., Tegmark, Max |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514257/ http://dx.doi.org/10.3390/e21100924 |
Ejemplares similares
-
Pareto-Optimal Clustering with the Primal Deterministic Information Bottleneck
por: Tan, Andrew K., et al.
Publicado: (2022) -
Pareto-Optimal Data Compression for Binary Classification Tasks
por: Tegmark, Max, et al.
Publicado: (2019) -
Deep Learnability: Using Neural Networks to Quantify Language Similarity and Learnability
por: Cohen, Clara, et al.
Publicado: (2020) -
The learnability of Pauli noise
por: Chen, Senrui, et al.
Publicado: (2023) -
Network architectures supporting learnability
por: Zurn, Perry, et al.
Publicado: (2020)