Cargando…

Control and Entropy Analysis of Corner Flow Separation in a Compressor Cascade Using Streamwise Grooves

Flow separation, which often occurs at the junction of blades and endwalls and seriously limits the aerodynamic performance of turbomachinery, is caused mainly by the boundary layer mixing on the blades and endwall surfaces and the transverse secondary flow. Focusing on a linear diffusion cascade wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Weilin, Ji, Lucheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514260/
http://dx.doi.org/10.3390/e21100928
_version_ 1783586547175522304
author Yi, Weilin
Ji, Lucheng
author_facet Yi, Weilin
Ji, Lucheng
author_sort Yi, Weilin
collection PubMed
description Flow separation, which often occurs at the junction of blades and endwalls and seriously limits the aerodynamic performance of turbomachinery, is caused mainly by the boundary layer mixing on the blades and endwall surfaces and the transverse secondary flow. Focusing on a linear diffusion cascade with 42° turning angle, the transverse secondary flow is found to be the dominant factor for flow separation, based on detailed analysis. Therefore, controlling the secondary flow to reduce the flow separation is very important. Based on the investigations, the flow separation can be controlled by cutting off the secondary flow. Therefore, nine kinds of streamwise grooves were designed and analyzed herein. Grooves at the endwall substantially inhibited the transverse secondary flow, but the flow structure varied over different spans. An optimum combination of groove width and height was identified, with the height being more important. A detailed flow analysis of the best scheme (with a smaller width and moderate height) was conducted. The loss reduction mechanism was obtained by 3D flow field and entropy analysis. This configuration can reduce the corner zone separation effect, energy loss coefficient, and flow loss.
format Online
Article
Text
id pubmed-7514260
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75142602020-11-09 Control and Entropy Analysis of Corner Flow Separation in a Compressor Cascade Using Streamwise Grooves Yi, Weilin Ji, Lucheng Entropy (Basel) Article Flow separation, which often occurs at the junction of blades and endwalls and seriously limits the aerodynamic performance of turbomachinery, is caused mainly by the boundary layer mixing on the blades and endwall surfaces and the transverse secondary flow. Focusing on a linear diffusion cascade with 42° turning angle, the transverse secondary flow is found to be the dominant factor for flow separation, based on detailed analysis. Therefore, controlling the secondary flow to reduce the flow separation is very important. Based on the investigations, the flow separation can be controlled by cutting off the secondary flow. Therefore, nine kinds of streamwise grooves were designed and analyzed herein. Grooves at the endwall substantially inhibited the transverse secondary flow, but the flow structure varied over different spans. An optimum combination of groove width and height was identified, with the height being more important. A detailed flow analysis of the best scheme (with a smaller width and moderate height) was conducted. The loss reduction mechanism was obtained by 3D flow field and entropy analysis. This configuration can reduce the corner zone separation effect, energy loss coefficient, and flow loss. MDPI 2019-09-24 /pmc/articles/PMC7514260/ http://dx.doi.org/10.3390/e21100928 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yi, Weilin
Ji, Lucheng
Control and Entropy Analysis of Corner Flow Separation in a Compressor Cascade Using Streamwise Grooves
title Control and Entropy Analysis of Corner Flow Separation in a Compressor Cascade Using Streamwise Grooves
title_full Control and Entropy Analysis of Corner Flow Separation in a Compressor Cascade Using Streamwise Grooves
title_fullStr Control and Entropy Analysis of Corner Flow Separation in a Compressor Cascade Using Streamwise Grooves
title_full_unstemmed Control and Entropy Analysis of Corner Flow Separation in a Compressor Cascade Using Streamwise Grooves
title_short Control and Entropy Analysis of Corner Flow Separation in a Compressor Cascade Using Streamwise Grooves
title_sort control and entropy analysis of corner flow separation in a compressor cascade using streamwise grooves
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514260/
http://dx.doi.org/10.3390/e21100928
work_keys_str_mv AT yiweilin controlandentropyanalysisofcornerflowseparationinacompressorcascadeusingstreamwisegrooves
AT jilucheng controlandentropyanalysisofcornerflowseparationinacompressorcascadeusingstreamwisegrooves