Cargando…
Robust Diabatic Grover Search by Landau–Zener–Stückelberg Oscillations
Quantum computation by the adiabatic theorem requires a slowly-varying Hamiltonian with respect to the spectral gap. We show that the Landau–Zener–Stückelberg oscillation phenomenon, which naturally occurs in quantum two-level systems under non-adiabatic periodic drive, can be exploited to find the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514269/ http://dx.doi.org/10.3390/e21100937 |
Sumario: | Quantum computation by the adiabatic theorem requires a slowly-varying Hamiltonian with respect to the spectral gap. We show that the Landau–Zener–Stückelberg oscillation phenomenon, which naturally occurs in quantum two-level systems under non-adiabatic periodic drive, can be exploited to find the ground state of an N-dimensional Grover Hamiltonian. The total runtime of this method is [Formula: see text] , which is equal to the computational time of the Grover algorithm in the quantum circuit model. An additional periodic drive can suppress a large subset of Hamiltonian control errors by using coherent destruction of tunneling, thus outperforming previous algorithms. |
---|