Cargando…

Robust Diabatic Grover Search by Landau–Zener–Stückelberg Oscillations

Quantum computation by the adiabatic theorem requires a slowly-varying Hamiltonian with respect to the spectral gap. We show that the Landau–Zener–Stückelberg oscillation phenomenon, which naturally occurs in quantum two-level systems under non-adiabatic periodic drive, can be exploited to find the...

Descripción completa

Detalles Bibliográficos
Autores principales: Atia, Yosi, Oren, Yonathan, Katz, Nadav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514269/
http://dx.doi.org/10.3390/e21100937
_version_ 1783586549204516864
author Atia, Yosi
Oren, Yonathan
Katz, Nadav
author_facet Atia, Yosi
Oren, Yonathan
Katz, Nadav
author_sort Atia, Yosi
collection PubMed
description Quantum computation by the adiabatic theorem requires a slowly-varying Hamiltonian with respect to the spectral gap. We show that the Landau–Zener–Stückelberg oscillation phenomenon, which naturally occurs in quantum two-level systems under non-adiabatic periodic drive, can be exploited to find the ground state of an N-dimensional Grover Hamiltonian. The total runtime of this method is [Formula: see text] , which is equal to the computational time of the Grover algorithm in the quantum circuit model. An additional periodic drive can suppress a large subset of Hamiltonian control errors by using coherent destruction of tunneling, thus outperforming previous algorithms.
format Online
Article
Text
id pubmed-7514269
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75142692020-11-09 Robust Diabatic Grover Search by Landau–Zener–Stückelberg Oscillations Atia, Yosi Oren, Yonathan Katz, Nadav Entropy (Basel) Article Quantum computation by the adiabatic theorem requires a slowly-varying Hamiltonian with respect to the spectral gap. We show that the Landau–Zener–Stückelberg oscillation phenomenon, which naturally occurs in quantum two-level systems under non-adiabatic periodic drive, can be exploited to find the ground state of an N-dimensional Grover Hamiltonian. The total runtime of this method is [Formula: see text] , which is equal to the computational time of the Grover algorithm in the quantum circuit model. An additional periodic drive can suppress a large subset of Hamiltonian control errors by using coherent destruction of tunneling, thus outperforming previous algorithms. MDPI 2019-09-25 /pmc/articles/PMC7514269/ http://dx.doi.org/10.3390/e21100937 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Atia, Yosi
Oren, Yonathan
Katz, Nadav
Robust Diabatic Grover Search by Landau–Zener–Stückelberg Oscillations
title Robust Diabatic Grover Search by Landau–Zener–Stückelberg Oscillations
title_full Robust Diabatic Grover Search by Landau–Zener–Stückelberg Oscillations
title_fullStr Robust Diabatic Grover Search by Landau–Zener–Stückelberg Oscillations
title_full_unstemmed Robust Diabatic Grover Search by Landau–Zener–Stückelberg Oscillations
title_short Robust Diabatic Grover Search by Landau–Zener–Stückelberg Oscillations
title_sort robust diabatic grover search by landau–zener–stückelberg oscillations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514269/
http://dx.doi.org/10.3390/e21100937
work_keys_str_mv AT atiayosi robustdiabaticgroversearchbylandauzenerstuckelbergoscillations
AT orenyonathan robustdiabaticgroversearchbylandauzenerstuckelbergoscillations
AT katznadav robustdiabaticgroversearchbylandauzenerstuckelbergoscillations