Cargando…
A Dynamical Systems-Based Hierarchy for Shannon, Metric and Topological Entropy
A rigorous dynamical systems-based hierarchy is established for the definitions of entropy of Shannon (information), Kolmogorov–Sinai (metric) and Adler, Konheim & McAndrew (topological). In particular, metric entropy, with the imposition of some additional properties, is proven to be a special...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514270/ http://dx.doi.org/10.3390/e21100938 |
Sumario: | A rigorous dynamical systems-based hierarchy is established for the definitions of entropy of Shannon (information), Kolmogorov–Sinai (metric) and Adler, Konheim & McAndrew (topological). In particular, metric entropy, with the imposition of some additional properties, is proven to be a special case of topological entropy and Shannon entropy is shown to be a particular form of metric entropy. This is the first of two papers aimed at establishing a dynamically grounded hierarchy comprising Clausius, Boltzmann, Gibbs, Shannon, metric and topological entropy in which each element is ideally a special case of its successor or some kind of limit thereof. |
---|