Cargando…
The Entropic Dynamics Approach to Quantum Mechanics
Entropic Dynamics (ED) is a framework in which Quantum Mechanics is derived as an application of entropic methods of inference. In ED the dynamics of the probability distribution is driven by entropy subject to constraints that are codified into a quantity later identified as the phase of the wave f...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514274/ http://dx.doi.org/10.3390/e21100943 |
_version_ | 1783586550368436224 |
---|---|
author | Caticha, Ariel |
author_facet | Caticha, Ariel |
author_sort | Caticha, Ariel |
collection | PubMed |
description | Entropic Dynamics (ED) is a framework in which Quantum Mechanics is derived as an application of entropic methods of inference. In ED the dynamics of the probability distribution is driven by entropy subject to constraints that are codified into a quantity later identified as the phase of the wave function. The central challenge is to specify how those constraints are themselves updated. In this paper we review and extend the ED framework in several directions. A new version of ED is introduced in which particles follow smooth differentiable Brownian trajectories (as opposed to non-differentiable Brownian paths). To construct ED we make use of the fact that the space of probabilities and phases has a natural symplectic structure (i.e., it is a phase space with Hamiltonian flows and Poisson brackets). Then, using an argument based on information geometry, a metric structure is introduced. It is shown that the ED that preserves the symplectic and metric structures—which is a Hamilton-Killing flow in phase space—is the linear Schrödinger equation. These developments allow us to discuss why wave functions are complex and the connections between the superposition principle, the single-valuedness of wave functions, and the quantization of electric charges. Finally, it is observed that Hilbert spaces are not necessary ingredients in this construction. They are a clever but merely optional trick that turns out to be convenient for practical calculations. |
format | Online Article Text |
id | pubmed-7514274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75142742020-11-09 The Entropic Dynamics Approach to Quantum Mechanics Caticha, Ariel Entropy (Basel) Article Entropic Dynamics (ED) is a framework in which Quantum Mechanics is derived as an application of entropic methods of inference. In ED the dynamics of the probability distribution is driven by entropy subject to constraints that are codified into a quantity later identified as the phase of the wave function. The central challenge is to specify how those constraints are themselves updated. In this paper we review and extend the ED framework in several directions. A new version of ED is introduced in which particles follow smooth differentiable Brownian trajectories (as opposed to non-differentiable Brownian paths). To construct ED we make use of the fact that the space of probabilities and phases has a natural symplectic structure (i.e., it is a phase space with Hamiltonian flows and Poisson brackets). Then, using an argument based on information geometry, a metric structure is introduced. It is shown that the ED that preserves the symplectic and metric structures—which is a Hamilton-Killing flow in phase space—is the linear Schrödinger equation. These developments allow us to discuss why wave functions are complex and the connections between the superposition principle, the single-valuedness of wave functions, and the quantization of electric charges. Finally, it is observed that Hilbert spaces are not necessary ingredients in this construction. They are a clever but merely optional trick that turns out to be convenient for practical calculations. MDPI 2019-09-26 /pmc/articles/PMC7514274/ http://dx.doi.org/10.3390/e21100943 Text en © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Caticha, Ariel The Entropic Dynamics Approach to Quantum Mechanics |
title | The Entropic Dynamics Approach to Quantum Mechanics |
title_full | The Entropic Dynamics Approach to Quantum Mechanics |
title_fullStr | The Entropic Dynamics Approach to Quantum Mechanics |
title_full_unstemmed | The Entropic Dynamics Approach to Quantum Mechanics |
title_short | The Entropic Dynamics Approach to Quantum Mechanics |
title_sort | entropic dynamics approach to quantum mechanics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514274/ http://dx.doi.org/10.3390/e21100943 |
work_keys_str_mv | AT catichaariel theentropicdynamicsapproachtoquantummechanics AT catichaariel entropicdynamicsapproachtoquantummechanics |