Cargando…
Online Signature Analysis for Characterizing Early Stage Alzheimer’s Disease: A Feasibility Study
We aimed to explore the online signature modality for characterizing early-stage Alzheimer’s disease (AD). A few studies have explored this modality, whereas many on online handwriting have been published. We focused on the analysis of raw temporal functions acquired by the digitizer on signatures p...
Autores principales: | Wang, Zelong, Abazid, Majd, Houmani, Nesma, Garcia-Salicetti, Sonia, Rigaud, Anne-Sophie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514287/ http://dx.doi.org/10.3390/e21100956 |
Ejemplares similares
-
Enhancing Security on Touch-Screen Sensors with Augmented Handwritten Signatures
por: Abazid, Majd, et al.
Publicado: (2020) -
On Hunting Animals of the Biometric Menagerie for Online Signature
por: Houmani, Nesma, et al.
Publicado: (2016) -
On Extracting Digitized Spiral Dynamics’ Representations: A Study on Transfer Learning for Early Alzheimer’s Detection
por: Carfora, Daniela, et al.
Publicado: (2022) -
Weighted Brain Network Analysis on Different Stages of Clinical Cognitive Decline
por: Abazid, Majd, et al.
Publicado: (2022) -
Clinical Gait Analysis: Characterizing Normal Gait and Pathological Deviations Due to Neurological Diseases
por: Hermez, Lorenzo, et al.
Publicado: (2023)