Cargando…
Information Theoretic Causal Effect Quantification
Modelling causal relationships has become popular across various disciplines. Most common frameworks for causality are the Pearlian causal directed acyclic graphs (DAGs) and the Neyman-Rubin potential outcome framework. In this paper, we propose an information theoretic framework for causal effect q...
Autores principales: | Wieczorek, Aleksander, Roth, Volker |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514306/ http://dx.doi.org/10.3390/e21100975 |
Ejemplares similares
-
On the Difference between the Information Bottleneck and the Deep Information Bottleneck
por: Wieczorek, Aleksander, et al.
Publicado: (2020) -
Information Bottleneck for Estimating Treatment Effects with Systematically Missing Covariates
por: Parbhoo, Sonali, et al.
Publicado: (2020) -
Information Theoretic Quantification of Diagnostic Uncertainty
por: Westover, M Brandon, et al.
Publicado: (2012) -
Information theoretical quantification of cooperativity in signalling complexes
por: Lenaerts, Tom, et al.
Publicado: (2009) -
ITGH: Information-Theoretic Granger Causal Inference on Heterogeneous Data
por: Behzadi, Sahar, et al.
Publicado: (2020)