Cargando…
Markov Information Bottleneck to Improve Information Flow in Stochastic Neural Networks
While rate distortion theory compresses data under a distortion constraint, information bottleneck (IB) generalizes rate distortion theory to learning problems by replacing a distortion constraint with a constraint of relevant information. In this work, we further extend IB to multiple Markov bottle...
Autores principales: | Tang Nguyen, Thanh, Choi, Jaesik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514307/ http://dx.doi.org/10.3390/e21100976 |
Ejemplares similares
-
Markov blankets, information geometry and stochastic thermodynamics
por: Parr, Thomas, et al.
Publicado: (2020) -
On the Difference between the Information Bottleneck and the Deep Information Bottleneck
por: Wieczorek, Aleksander, et al.
Publicado: (2020) -
Utilizing Information Bottleneck to Evaluate the Capability of Deep Neural Networks for Image Classification †
por: Cheng, Hao, et al.
Publicado: (2019) -
Novel Convolutional Neural Network with Variational Information Bottleneck for P300 Detection
por: Liao, Hongpeng, et al.
Publicado: (2020) -
Learnability for the Information Bottleneck
por: Wu, Tailin, et al.
Publicado: (2019)