Cargando…

Entropic Divergence and Entropy Related to Nonlinear Master Equations

We reverse engineer entropy formulas from entropic divergence, optimized to given classes of probability distribution function (PDF) evolution dynamical equation. For linear dynamics of the distribution function, the traditional Kullback–Leibler formula follows from using the logarithm function in t...

Descripción completa

Detalles Bibliográficos
Autores principales: Biró, Tamás Sándor, Néda, Zoltán, Telcs, András
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514324/
http://dx.doi.org/10.3390/e21100993
Descripción
Sumario:We reverse engineer entropy formulas from entropic divergence, optimized to given classes of probability distribution function (PDF) evolution dynamical equation. For linear dynamics of the distribution function, the traditional Kullback–Leibler formula follows from using the logarithm function in the Csiszár’s f-divergence construction, while for nonlinear master equations more general formulas emerge. As applications, we review a local growth and global reset (LGGR) model for citation distributions, income distribution models and hadron number fluctuations in high energy collisions.