Cargando…
Covariant Relativistic Non-Equilibrium Thermodynamics of Multi-Component Systems †
Non-equilibrium and equilibrium thermodynamics of an interacting component in a relativistic multi-component system is discussed covariantly by exploiting an entropy identity. The special case of the corresponding free component is considered. Equilibrium conditions and especially the multi-componen...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514338/ http://dx.doi.org/10.3390/e21111034 |
Sumario: | Non-equilibrium and equilibrium thermodynamics of an interacting component in a relativistic multi-component system is discussed covariantly by exploiting an entropy identity. The special case of the corresponding free component is considered. Equilibrium conditions and especially the multi-component Killing relation of the 4-temperature are discussed. Two axioms characterize the mixture: additivity of the energy momentum tensors and additivity of the 4-entropies of the components generating those of the mixture. The resulting quantities of a single component and of the mixture as a whole, energy, energy flux, momentum flux, stress tensor, entropy, entropy flux, supply and production are derived. Finally, a general relativistic 2-component mixture is discussed with respect to their gravitation generating energy–momentum tensors. |
---|