Cargando…
Fusing Feature Distribution Entropy with R-MAC Features in Image Retrieval
Image retrieval based on a convolutional neural network (CNN) has attracted great attention among researchers because of the high performance. The pooling method has become a research hotpot in the task of image retrieval in recent years. In this paper, we propose the feature distribution entropy (F...
Autores principales: | Liu, Pingping, Gou, Guixia, Guo, Huili, Zhang, Danyang, Zhao, Hongwei, Zhou, Qiuzhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514342/ http://dx.doi.org/10.3390/e21111037 |
Ejemplares similares
-
Relative Distribution Entropy Loss Function in CNN Image Retrieval
por: Liu, Pingping, et al.
Publicado: (2020) -
Global Optimal Structured Embedding Learning for Remote Sensing Image Retrieval
por: Liu, Pingping, et al.
Publicado: (2020) -
Diabetic Retinal Grading Using Attention-Based Bilinear Convolutional Neural Network and Complement Cross Entropy
por: Liu, Pingping, et al.
Publicado: (2021) -
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
por: Zuo, Xin, et al.
Publicado: (2022) -
Beta Distribution-Based Cross-Entropy for Feature Selection
por: Dai, Weixing, et al.
Publicado: (2019)