Cargando…
Impact of Misclassification Rates on Compression Efficiency of Red Blood Cell Images of Malaria Infection Using Deep Learning
Malaria is a severe public health problem worldwide, with some developing countries being most affected. Reliable remote diagnosis of malaria infection will benefit from efficient compression of high-resolution microscopic images. This paper addresses a lossless compression of malaria-infected red b...
Autores principales: | Dong, Yuhang, Pan, W. David, Wu, Dongsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514366/ http://dx.doi.org/10.3390/e21111062 |
Ejemplares similares
-
Image Classification in JPEG Compression Domain for Malaria Infection Detection
por: Dong, Yuhang, et al.
Publicado: (2022) -
Reducing misclassification bias in severe malaria research
por: Ippolito, Matthew M., et al.
Publicado: (2022) -
A Deep Learning Approach for Segmentation of Red Blood Cell Images and Malaria Detection
por: Delgado-Ortet, Maria, et al.
Publicado: (2020) -
Bayesian adjustment of gastric cancer mortality rate in the presence of misclassification
por: Hajizadeh, Nastaran, et al.
Publicado: (2017) -
Exploring Misclassification Information for Fine-Grained Image Classification
por: Wang, Da-Han, et al.
Publicado: (2021)