Cargando…
An Integrated Approach for Making Inference on the Number of Clusters in a Mixture Model
This paper presents an integrated approach for the estimation of the parameters of a mixture model in the context of data clustering. The method is designed to estimate the unknown number of clusters from observed data. For this, we marginalize out the weights for getting allocation probabilities th...
Autores principales: | Saraiva, Erlandson Ferreira, Suzuki, Adriano Kamimura, Milan, Luis Aparecido, Pereira, Carlos Alberto de Bragança |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514367/ http://dx.doi.org/10.3390/e21111063 |
Ejemplares similares
-
Bayesian Computational Methods for Sampling from the Posterior Distribution of a Bivariate Survival Model, Based on AMH Copula in the Presence of Right-Censored Data
por: Saraiva, Erlandson Ferreira, et al.
Publicado: (2018) -
Piecewise Modeling the Accumulated Daily Growth of COVID-19 Deaths: The Case of the State of São Paulo, Brazil
por: Saraiva, Erlandson Ferreira, et al.
Publicado: (2021) -
Modeling Overdispersed Dengue Data via Poisson Inverse Gaussian Regression Model: A Case Study in the City of Campo Grande, MS, Brazil
por: Saraiva, Erlandson Ferreira, et al.
Publicado: (2022) -
A Bayesian Approach for Decision Making on the Identification of Genes with Different Expression Levels: An Application to Escherichia coli Bacterium Data
por: Saraiva, Erlandson F., et al.
Publicado: (2012) -
Multilook SAR Image Segmentation with an Unknown Number of Clusters Using a Gamma Mixture Model and Hierarchical Clustering
por: Zhao, Quanhua, et al.
Publicado: (2017)