Cargando…
The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design
We show a link between Bayesian inference and information theory that is useful for model selection, assessment of information entropy and experimental design. We align Bayesian model evidence (BME) with relative entropy and cross entropy in order to simplify computations using prior-based (Monte Ca...
Autores principales: | Oladyshkin, Sergey, Nowak, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514425/ http://dx.doi.org/10.3390/e21111081 |
Ejemplares similares
-
Bayesian(3) Active Learning for the Gaussian Process Emulator Using Information Theory
por: Oladyshkin, Sergey, et al.
Publicado: (2020) -
Bayesian inference for the information gain model
por: Stringer, Sven, et al.
Publicado: (2011) -
Controlled information integration and bayesian inference
por: Juslin, Peter
Publicado: (2015) -
The Bayesian Inference of Pareto Models Based on Information Geometry
por: Sun, Fupeng, et al.
Publicado: (2020) -
Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design
por: Xu, Zhihang, et al.
Publicado: (2020)