Cargando…
Embedding Learning with Triple Trustiness on Noisy Knowledge Graph
Embedding learning on knowledge graphs (KGs) aims to encode all entities and relationships into a continuous vector space, which provides an effective and flexible method to implement downstream knowledge-driven artificial intelligence (AI) and natural language processing (NLP) tasks. Since KG const...
Autores principales: | Zhao, Yu, Feng, Huali, Gallinari, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514427/ http://dx.doi.org/10.3390/e21111083 |
Ejemplares similares
-
Serology for visceral leishmaniasis: How trusty is the accuracy reported by the manufacturers?
por: Freire, Mariana Lourenço, et al.
Publicado: (2023) -
Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding
por: Liu, Yang, et al.
Publicado: (2022) -
A type-augmented knowledge graph embedding framework for knowledge graph completion
por: He, Peng, et al.
Publicado: (2023) -
Learning from Knowledge Graphs: Neural Fine-Grained Entity Typing with Copy-Generation Networks
por: Yu, Zongjian, et al.
Publicado: (2022) -
Hyperbolic Knowledge Graph Embeddings for Knowledge Base Completion
por: Kolyvakis, Prodromos, et al.
Publicado: (2020)