Cargando…
Dynamical Sampling with Langevin Normalization Flows
In Bayesian machine learning, sampling methods provide the asymptotically unbiased estimation for the inference of the complex probability distributions, where Markov chain Monte Carlo (MCMC) is one of the most popular sampling methods. However, MCMC can lead to high autocorrelation of samples or po...
Autores principales: | Gu, Minghao, Sun, Shiliang, Liu, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514440/ http://dx.doi.org/10.3390/e21111096 |
Ejemplares similares
-
The Langevin and generalised Langevin approach to the dynamics of atomic, polymeric and colloidal systems
por: Snook, Ian
Publicado: (2007) -
Langevin formulation of quantum dynamics
por: Roncadelli, Marco
Publicado: (1991) -
Conformational Transitions of Amyloid-β: A Langevin
and Generalized Langevin Dynamics Simulation Study
por: Singh, Vishal, et al.
Publicado: (2021) -
Using Perturbed Underdamped Langevin Dynamics to Efficiently Sample from Probability Distributions
por: Duncan, A. B., et al.
Publicado: (2017) -
Convergence Rates for the Constrained Sampling via Langevin Monte Carlo
por: Zhu, Yuanzheng
Publicado: (2023)