Cargando…
Biorthogonal-Wavelet-Based Method for Numerical Solution of Volterra Integral Equations
Framelets theory has been well studied in many applications in image processing, data recovery and computational analysis due to the key properties of framelets such as sparse representation and accuracy in coefficients recovery in the area of numerical and computational theory. This work is devoted...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514442/ http://dx.doi.org/10.3390/e21111098 |
_version_ | 1783586589127999488 |
---|---|
author | Mohammad, Mutaz |
author_facet | Mohammad, Mutaz |
author_sort | Mohammad, Mutaz |
collection | PubMed |
description | Framelets theory has been well studied in many applications in image processing, data recovery and computational analysis due to the key properties of framelets such as sparse representation and accuracy in coefficients recovery in the area of numerical and computational theory. This work is devoted to shedding some light on the benefits of using such framelets in the area of numerical computations of integral equations. We introduce a new numerical method for solving Volterra integral equations. It is based on pseudo-spline quasi-affine tight framelet systems generated via the oblique extension principles. The resulting system is converted into matrix equations via these generators. We present examples of the generated pseudo-splines quasi-affine tight framelet systems. Some numerical results to validate the proposed method are presented to illustrate the efficiency and accuracy of the method. |
format | Online Article Text |
id | pubmed-7514442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75144422020-11-09 Biorthogonal-Wavelet-Based Method for Numerical Solution of Volterra Integral Equations Mohammad, Mutaz Entropy (Basel) Article Framelets theory has been well studied in many applications in image processing, data recovery and computational analysis due to the key properties of framelets such as sparse representation and accuracy in coefficients recovery in the area of numerical and computational theory. This work is devoted to shedding some light on the benefits of using such framelets in the area of numerical computations of integral equations. We introduce a new numerical method for solving Volterra integral equations. It is based on pseudo-spline quasi-affine tight framelet systems generated via the oblique extension principles. The resulting system is converted into matrix equations via these generators. We present examples of the generated pseudo-splines quasi-affine tight framelet systems. Some numerical results to validate the proposed method are presented to illustrate the efficiency and accuracy of the method. MDPI 2019-11-10 /pmc/articles/PMC7514442/ http://dx.doi.org/10.3390/e21111098 Text en © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mohammad, Mutaz Biorthogonal-Wavelet-Based Method for Numerical Solution of Volterra Integral Equations |
title | Biorthogonal-Wavelet-Based Method for Numerical Solution of Volterra Integral Equations |
title_full | Biorthogonal-Wavelet-Based Method for Numerical Solution of Volterra Integral Equations |
title_fullStr | Biorthogonal-Wavelet-Based Method for Numerical Solution of Volterra Integral Equations |
title_full_unstemmed | Biorthogonal-Wavelet-Based Method for Numerical Solution of Volterra Integral Equations |
title_short | Biorthogonal-Wavelet-Based Method for Numerical Solution of Volterra Integral Equations |
title_sort | biorthogonal-wavelet-based method for numerical solution of volterra integral equations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514442/ http://dx.doi.org/10.3390/e21111098 |
work_keys_str_mv | AT mohammadmutaz biorthogonalwaveletbasedmethodfornumericalsolutionofvolterraintegralequations |