Cargando…
Biorthogonal-Wavelet-Based Method for Numerical Solution of Volterra Integral Equations
Framelets theory has been well studied in many applications in image processing, data recovery and computational analysis due to the key properties of framelets such as sparse representation and accuracy in coefficients recovery in the area of numerical and computational theory. This work is devoted...
Autor principal: | Mohammad, Mutaz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514442/ http://dx.doi.org/10.3390/e21111098 |
Ejemplares similares
-
Efficient numerical technique for solution of delay Volterra-Fredholm integral equations using Haar wavelet
por: Amin, Rohul, et al.
Publicado: (2020) -
An Efficient Method Based on Framelets for Solving Fractional Volterra Integral Equations
por: Mohammad, Mutaz, et al.
Publicado: (2020) -
Loop group factorization of biorthogonal wavelet bases
por: Borac, S, et al.
Publicado: (1997) -
On the numerical stability of spline function approximations to solutions of Volterra integral equations of the second kind
por: El-Tom, M E A
Publicado: (1974) -
Optimal model for 4-band biorthogonal wavelets bases for fast calculation
por: Zou, Qingyun, et al.
Publicado: (2017)