Cargando…
Stochastic Gradient Annealed Importance Sampling for Efficient Online Marginal Likelihood Estimation †
We consider estimating the marginal likelihood in settings with independent and identically distributed (i.i.d.) data. We propose estimating the predictive distributions in a sequential factorization of the marginal likelihood in such settings by using stochastic gradient Markov Chain Monte Carlo te...
Autores principales: | Cameron, Scott A., Eggers, Hans C., Kroon, Steve |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514453/ http://dx.doi.org/10.3390/e21111109 |
Ejemplares similares
-
Approximate maximum likelihood estimation for stochastic chemical kinetics
por: Andreychenko, Aleksandr, et al.
Publicado: (2012) -
Unbiased and efficient log-likelihood estimation with inverse binomial sampling
por: van Opheusden, Bas, et al.
Publicado: (2020) -
Accelerated maximum likelihood parameter estimation for stochastic biochemical systems
por: Daigle, Bernie J, et al.
Publicado: (2012) -
Fast Marginal Likelihood Estimation of Penalties for Group-Adaptive Elastic Net
por: van Nee, Mirrelijn M., et al.
Publicado: (2022) -
stochprofML: stochastic profiling using maximum likelihood estimation in R
por: Amrhein, Lisa, et al.
Publicado: (2021)