Cargando…
Distribution Structure Learning Loss (DSLL) Based on Deep Metric Learning for Image Retrieval
The massive number of images demands highly efficient image retrieval tools. Deep distance metric learning (DDML) is proposed to learn image similarity metrics in an end-to-end manner based on the convolution neural network, which has achieved encouraging results. The loss function is crucial in DDM...
Autores principales: | Fan, Lili, Zhao, Hongwei, Zhao, Haoyu, Liu, Pingping, Hu, Huangshui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514465/ http://dx.doi.org/10.3390/e21111121 |
Ejemplares similares
-
Leaf disease image retrieval with object detection and deep metric learning
por: Peng, Yingshu, et al.
Publicado: (2022) -
Feature Fusion and Metric Learning Network for Zero-Shot Sketch-Based Image Retrieval
por: Zhao, Honggang, et al.
Publicado: (2023) -
Sparse Representation-Based Discriminative Metric Learning for Brain MRI Image Retrieval
por: Zhou, Guohua, et al.
Publicado: (2022) -
Relative Distribution Entropy Loss Function in CNN Image Retrieval
por: Liu, Pingping, et al.
Publicado: (2020) -
Deep metric learning-based image retrieval system for chest radiograph and its clinical applications in COVID-19
por: Zhong, Aoxiao, et al.
Publicado: (2021)