Cargando…
Sub-Graph Regularization on Kernel Regression for Robust Semi-Supervised Dimensionality Reduction
Dimensionality reduction has always been a major problem for handling huge dimensionality datasets. Due to the utilization of labeled data, supervised dimensionality reduction methods such as Linear Discriminant Analysis tend achieve better classification performance compared with unsupervised metho...
Autores principales: | Liu, Jiao, Zhao, Mingbo, Kong, Weijian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514469/ http://dx.doi.org/10.3390/e21111125 |
Ejemplares similares
-
Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction
por: Hong, Danfeng, et al.
Publicado: (2019) -
Person re-identification via semi-supervised adaptive graph embedding
por: Liu, Jiao, et al.
Publicado: (2022) -
Semi‐supervised empirical Bayes group‐regularized factor regression
por: Münch, Magnus M., et al.
Publicado: (2022) -
Semi-supervised multi-label classification using an extended graph-based manifold regularization
por: Li, Ding, et al.
Publicado: (2022) -
Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing
por: Li, Shuang, et al.
Publicado: (2016)