Cargando…
Convergence Rates for Empirical Estimation of Binary Classification Bounds
Bounding the best achievable error probability for binary classification problems is relevant to many applications including machine learning, signal processing, and information theory. Many bounds on the Bayes binary classification error rate depend on information divergences between the pair of cl...
Autores principales: | Sekeh, Salimeh Yasaei, Noshad, Morteza, Moon, Kevin R., Hero, Alfred O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514489/ http://dx.doi.org/10.3390/e21121144 |
Ejemplares similares
-
Geometric Estimation of Multivariate Dependency
por: Yasaei Sekeh, Salimeh, et al.
Publicado: (2019) -
A data value metric for quantifying information content and utility
por: Noshad, Morteza, et al.
Publicado: (2021) -
Ensemble Estimation of Information Divergence †
por: Moon, Kevin R., et al.
Publicado: (2018) -
Asymptotic convergence in distribution of the area bounded by prevalence-weighted Kaplan–Meier curves using empirical process modelling
por: Heuser, Aaron, et al.
Publicado: (2018) -
An investigation of penalization and data augmentation to improve convergence of generalized estimating equations for clustered binary outcomes
por: Geroldinger, Angelika, et al.
Publicado: (2022)