Cargando…
Community Detection Method Based on Node Density, Degree Centrality, and K-Means Clustering in Complex Network
Community detection in networks plays a key role in understanding their structures, and the application of clustering algorithms in community detection tasks in complex networks has attracted intensive attention in recent years. In this paper, based on the definition of uncertainty of node community...
Autores principales: | Cai, Biao, Zeng, Lina, Wang, Yanpeng, Li, Hongjun, Hu, Yanmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514491/ http://dx.doi.org/10.3390/e21121145 |
Ejemplares similares
-
Predicting Node Degree Centrality with the Node Prominence Profile
por: Yang, Yang, et al.
Publicado: (2014) -
An Improved Trilateration Positioning Algorithm with Anchor Node Combination and K-Means Clustering
por: Luo, Qinghua, et al.
Publicado: (2022) -
The critical node detection problem in hypergraphs using weighted node degree centrality
por: Képes, Tamás-Zsolt
Publicado: (2023) -
Estimating degree–degree correlation and network cores from the connectivity of high–degree nodes in complex networks
por: Mondragón, R. J.
Publicado: (2020) -
K-means and hierarchical clustering with Python
por: Grus, Joel
Publicado: (2016)