Cargando…
Classification of Hepatitis Viruses from Sequencing Chromatograms Using Multiscale Permutation Entropy and Support Vector Machines
Classifying nucleic acid trace files is an important issue in molecular biology researches. For the purpose of obtaining better classification performance, the question of which features are used and what classifier is implemented to best represent the properties of nucleic acid trace files plays a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514494/ http://dx.doi.org/10.3390/e21121149 |
_version_ | 1783586600795504640 |
---|---|
author | Öz, Ersoy Aşkın, Öyküm Esra |
author_facet | Öz, Ersoy Aşkın, Öyküm Esra |
author_sort | Öz, Ersoy |
collection | PubMed |
description | Classifying nucleic acid trace files is an important issue in molecular biology researches. For the purpose of obtaining better classification performance, the question of which features are used and what classifier is implemented to best represent the properties of nucleic acid trace files plays a vital role. In this study, different feature extraction methods based on statistical and entropy theory are utilized to discriminate deoxyribonucleic acid chromatograms, and distinguishing their signals visually is almost impossible. Extracted features are used as the input feature set for the classifiers of Support Vector Machines (SVM) with different kernel functions. The proposed framework is applied to a total number of 200 hepatitis nucleic acid trace files which consist of Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV). While the use of statistical-based feature extraction methods allows representing the properties of hepatitis nucleic acid trace files with descriptive measures such as mean, median and standard deviation, entropy-based feature extraction methods including permutation entropy and multiscale permutation entropy enable quantifying the complexity of these files. The results indicate that using statistical and entropy-based features produces exceptionally high performances in terms of accuracies (reached at nearly 99%) in classifying HBV and HCV. |
format | Online Article Text |
id | pubmed-7514494 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75144942020-11-09 Classification of Hepatitis Viruses from Sequencing Chromatograms Using Multiscale Permutation Entropy and Support Vector Machines Öz, Ersoy Aşkın, Öyküm Esra Entropy (Basel) Article Classifying nucleic acid trace files is an important issue in molecular biology researches. For the purpose of obtaining better classification performance, the question of which features are used and what classifier is implemented to best represent the properties of nucleic acid trace files plays a vital role. In this study, different feature extraction methods based on statistical and entropy theory are utilized to discriminate deoxyribonucleic acid chromatograms, and distinguishing their signals visually is almost impossible. Extracted features are used as the input feature set for the classifiers of Support Vector Machines (SVM) with different kernel functions. The proposed framework is applied to a total number of 200 hepatitis nucleic acid trace files which consist of Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV). While the use of statistical-based feature extraction methods allows representing the properties of hepatitis nucleic acid trace files with descriptive measures such as mean, median and standard deviation, entropy-based feature extraction methods including permutation entropy and multiscale permutation entropy enable quantifying the complexity of these files. The results indicate that using statistical and entropy-based features produces exceptionally high performances in terms of accuracies (reached at nearly 99%) in classifying HBV and HCV. MDPI 2019-11-25 /pmc/articles/PMC7514494/ http://dx.doi.org/10.3390/e21121149 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Öz, Ersoy Aşkın, Öyküm Esra Classification of Hepatitis Viruses from Sequencing Chromatograms Using Multiscale Permutation Entropy and Support Vector Machines |
title | Classification of Hepatitis Viruses from Sequencing Chromatograms Using Multiscale Permutation Entropy and Support Vector Machines |
title_full | Classification of Hepatitis Viruses from Sequencing Chromatograms Using Multiscale Permutation Entropy and Support Vector Machines |
title_fullStr | Classification of Hepatitis Viruses from Sequencing Chromatograms Using Multiscale Permutation Entropy and Support Vector Machines |
title_full_unstemmed | Classification of Hepatitis Viruses from Sequencing Chromatograms Using Multiscale Permutation Entropy and Support Vector Machines |
title_short | Classification of Hepatitis Viruses from Sequencing Chromatograms Using Multiscale Permutation Entropy and Support Vector Machines |
title_sort | classification of hepatitis viruses from sequencing chromatograms using multiscale permutation entropy and support vector machines |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514494/ http://dx.doi.org/10.3390/e21121149 |
work_keys_str_mv | AT ozersoy classificationofhepatitisvirusesfromsequencingchromatogramsusingmultiscalepermutationentropyandsupportvectormachines AT askınoykumesra classificationofhepatitisvirusesfromsequencingchromatogramsusingmultiscalepermutationentropyandsupportvectormachines |