Cargando…
Predicting the Evolution of Physics Research from a Complex Network Perspective
The advancement of science, as outlined by Popper and Kuhn, is largely qualitative, but with bibliometric data, it is possible and desirable to develop a quantitative picture of scientific progress. Furthermore, it is also important to allocate finite resources to research topics that have the growt...
Autores principales: | Liu, Wenyuan, Saganowski, Stanisław, Kazienko, Przemysław, Cheong, Siew Ann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514497/ http://dx.doi.org/10.3390/e21121152 |
Ejemplares similares
-
Analysis of group evolution prediction in complex networks
por: Saganowski, Stanisław, et al.
Publicado: (2019) -
Knowledge evolution in physics research: An analysis of bibliographic coupling networks
por: Liu, Wenyuan, et al.
Publicado: (2017) -
Can We Ditch Feature Engineering? End-to-End Deep Learning for Affect Recognition from Physiological Sensor Data
por: Dzieżyc, Maciej, et al.
Publicado: (2020) -
Processing Photoplethysmograms Recorded by Smartwatches to Improve the Quality of Derived Pulse Rate Variability
por: Polak, Adam G., et al.
Publicado: (2022) -
Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables
por: Saganowski, Stanisław, et al.
Publicado: (2022)