Cargando…
Sample Entropy Combined with the K-Means Clustering Algorithm Reveals Six Functional Networks of the Brain
Identifying brain regions contained in brain functional networks and functions of brain functional networks is of great significance in understanding the complexity of the human brain. The 160 regions of interest (ROIs) in the human brain determined by the Dosenbach’s template have been divided into...
Autores principales: | Jia, Yanbing, Gu, Huaguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514501/ http://dx.doi.org/10.3390/e21121156 |
Ejemplares similares
-
Sample entropy reveals an age-related reduction in the complexity of dynamic brain
por: Jia, Yanbing, et al.
Publicado: (2017) -
An Entropy Regularization k-Means Algorithm with a New Measure of between-Cluster Distance in Subspace Clustering
por: Xiong, Liyan, et al.
Publicado: (2019) -
An Improved Trilateration Positioning Algorithm with Anchor Node Combination and K-Means Clustering
por: Luo, Qinghua, et al.
Publicado: (2022) -
Finding reproducible cluster partitions for the k-means algorithm
por: Lisboa, Paulo JG, et al.
Publicado: (2013) -
Clustering Using Boosted Constrained k-Means Algorithm
por: Okabe, Masayuki, et al.
Publicado: (2018)