Cargando…
Temperature Effects and Entropy Generation of Pressure Retarded Osmosis Process
Pressure retarded osmosis (PRO) is considered as one of the promising and new techniques to generate power. In this work, a numerical model was used to study the effect of the flow streams temperature on the performance of the PRO process and entropy generation. The variation of the feed solution an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514502/ http://dx.doi.org/10.3390/e21121158 |
_version_ | 1783586602654629888 |
---|---|
author | Abdelkader, Bassel Sharqawy, Mostafa H. |
author_facet | Abdelkader, Bassel Sharqawy, Mostafa H. |
author_sort | Abdelkader, Bassel |
collection | PubMed |
description | Pressure retarded osmosis (PRO) is considered as one of the promising and new techniques to generate power. In this work, a numerical model was used to study the effect of the flow streams temperature on the performance of the PRO process and entropy generation. The variation of the feed solution and draw solution temperatures, pressure difference, concentration difference, and flow rates on the power density and entropy generation were discussed. The model results were validated with experimental measurements obtained from literature and showed a good agreement with the model predictions. It was found that the power density increases by about 130% when both feed solution and draw solution temperatures increase from 20 °C to 50 °C. The feed solution temperature has more impact on the power density than that of the draw solution. This is due to the direct effect of the feed solution temperature on the water permeability and diffusion coefficient. The effect of the feed solution temperature becomes significant at higher concentration differences. Whereas, at low concentrations, the power density slightly increases with the feed temperature. Furthermore, it is found that there is an optimum volumetric flow in the channels that maximizes the power density and minimizes the entropy generation when fixing other operating conditions. |
format | Online Article Text |
id | pubmed-7514502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75145022020-11-09 Temperature Effects and Entropy Generation of Pressure Retarded Osmosis Process Abdelkader, Bassel Sharqawy, Mostafa H. Entropy (Basel) Article Pressure retarded osmosis (PRO) is considered as one of the promising and new techniques to generate power. In this work, a numerical model was used to study the effect of the flow streams temperature on the performance of the PRO process and entropy generation. The variation of the feed solution and draw solution temperatures, pressure difference, concentration difference, and flow rates on the power density and entropy generation were discussed. The model results were validated with experimental measurements obtained from literature and showed a good agreement with the model predictions. It was found that the power density increases by about 130% when both feed solution and draw solution temperatures increase from 20 °C to 50 °C. The feed solution temperature has more impact on the power density than that of the draw solution. This is due to the direct effect of the feed solution temperature on the water permeability and diffusion coefficient. The effect of the feed solution temperature becomes significant at higher concentration differences. Whereas, at low concentrations, the power density slightly increases with the feed temperature. Furthermore, it is found that there is an optimum volumetric flow in the channels that maximizes the power density and minimizes the entropy generation when fixing other operating conditions. MDPI 2019-11-27 /pmc/articles/PMC7514502/ http://dx.doi.org/10.3390/e21121158 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abdelkader, Bassel Sharqawy, Mostafa H. Temperature Effects and Entropy Generation of Pressure Retarded Osmosis Process |
title | Temperature Effects and Entropy Generation of Pressure Retarded Osmosis Process |
title_full | Temperature Effects and Entropy Generation of Pressure Retarded Osmosis Process |
title_fullStr | Temperature Effects and Entropy Generation of Pressure Retarded Osmosis Process |
title_full_unstemmed | Temperature Effects and Entropy Generation of Pressure Retarded Osmosis Process |
title_short | Temperature Effects and Entropy Generation of Pressure Retarded Osmosis Process |
title_sort | temperature effects and entropy generation of pressure retarded osmosis process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514502/ http://dx.doi.org/10.3390/e21121158 |
work_keys_str_mv | AT abdelkaderbassel temperatureeffectsandentropygenerationofpressureretardedosmosisprocess AT sharqawymostafah temperatureeffectsandentropygenerationofpressureretardedosmosisprocess |