Cargando…
Data-Driven GENERIC Modeling of Poroviscoelastic Materials
Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting their effective modeling and simulation. This work uses experimental atomic force nanoindentation of thick hydrogels to identify the indentation forces are a function of the indentation depth. Later on, the ato...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514510/ http://dx.doi.org/10.3390/e21121165 |
_version_ | 1783586604515852288 |
---|---|
author | Ghnatios, Chady Alfaro, Iciar González, David Chinesta, Francisco Cueto, Elias |
author_facet | Ghnatios, Chady Alfaro, Iciar González, David Chinesta, Francisco Cueto, Elias |
author_sort | Ghnatios, Chady |
collection | PubMed |
description | Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting their effective modeling and simulation. This work uses experimental atomic force nanoindentation of thick hydrogels to identify the indentation forces are a function of the indentation depth. Later on, the atomic force microscopy results are used in a GENERIC general equation for non-equilibrium reversible–irreversible coupling (GENERIC) formalism to identify the best model conserving basic thermodynamic laws. The data-driven GENERIC analysis identifies the material behavior with high fidelity for both data fitting and prediction. |
format | Online Article Text |
id | pubmed-7514510 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75145102020-11-09 Data-Driven GENERIC Modeling of Poroviscoelastic Materials Ghnatios, Chady Alfaro, Iciar González, David Chinesta, Francisco Cueto, Elias Entropy (Basel) Article Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting their effective modeling and simulation. This work uses experimental atomic force nanoindentation of thick hydrogels to identify the indentation forces are a function of the indentation depth. Later on, the atomic force microscopy results are used in a GENERIC general equation for non-equilibrium reversible–irreversible coupling (GENERIC) formalism to identify the best model conserving basic thermodynamic laws. The data-driven GENERIC analysis identifies the material behavior with high fidelity for both data fitting and prediction. MDPI 2019-11-28 /pmc/articles/PMC7514510/ http://dx.doi.org/10.3390/e21121165 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ghnatios, Chady Alfaro, Iciar González, David Chinesta, Francisco Cueto, Elias Data-Driven GENERIC Modeling of Poroviscoelastic Materials |
title | Data-Driven GENERIC Modeling of Poroviscoelastic Materials |
title_full | Data-Driven GENERIC Modeling of Poroviscoelastic Materials |
title_fullStr | Data-Driven GENERIC Modeling of Poroviscoelastic Materials |
title_full_unstemmed | Data-Driven GENERIC Modeling of Poroviscoelastic Materials |
title_short | Data-Driven GENERIC Modeling of Poroviscoelastic Materials |
title_sort | data-driven generic modeling of poroviscoelastic materials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514510/ http://dx.doi.org/10.3390/e21121165 |
work_keys_str_mv | AT ghnatioschady datadrivengenericmodelingofporoviscoelasticmaterials AT alfaroiciar datadrivengenericmodelingofporoviscoelasticmaterials AT gonzalezdavid datadrivengenericmodelingofporoviscoelasticmaterials AT chinestafrancisco datadrivengenericmodelingofporoviscoelasticmaterials AT cuetoelias datadrivengenericmodelingofporoviscoelasticmaterials |