Cargando…
Data-Driven GENERIC Modeling of Poroviscoelastic Materials
Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting their effective modeling and simulation. This work uses experimental atomic force nanoindentation of thick hydrogels to identify the indentation forces are a function of the indentation depth. Later on, the ato...
Autores principales: | Ghnatios, Chady, Alfaro, Iciar, González, David, Chinesta, Francisco, Cueto, Elias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514510/ http://dx.doi.org/10.3390/e21121165 |
Ejemplares similares
-
Physically sound, self-learning digital twins for sloshing fluids
por: Moya, Beatriz, et al.
Publicado: (2020) -
A Data-Driven Learning Method for Constitutive Modeling: Application to Vascular Hyperelastic Soft Tissues
por: González, David, et al.
Publicado: (2020) -
Spring–damper equivalents of the fractional, poroelastic, and poroviscoelastic models for elastography
por: Holm, Sverre
Publicado: (2017) -
PGD-based modeling of materials, structures and processes
por: Chinesta, Francisco, et al.
Publicado: (2014) -
Empowering Materials Processing and Performance from Data and AI
por: Chinesta, Francisco, et al.
Publicado: (2021)