Cargando…
A Strong Converse Theorem for Hypothesis Testing Against Independence over a Two-Hop Network †
By proving a strong converse theorem, we strengthen the weak converse result by Salehkalaibar, Wigger and Wang (2017) concerning hypothesis testing against independence over a two-hop network with communication constraints. Our proof follows by combining two recently-proposed techniques for proving...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514516/ http://dx.doi.org/10.3390/e21121171 |
Sumario: | By proving a strong converse theorem, we strengthen the weak converse result by Salehkalaibar, Wigger and Wang (2017) concerning hypothesis testing against independence over a two-hop network with communication constraints. Our proof follows by combining two recently-proposed techniques for proving strong converse theorems, namely the strong converse technique via reverse hypercontractivity by Liu, van Handel, and Verdú (2017) and the strong converse technique by Tyagi and Watanabe (2018), in which the authors used a change-of-measure technique and replaced hard Markov constraints with soft information costs. The techniques used in our paper can also be applied to prove strong converse theorems for other multiterminal hypothesis testing against independence problems. |
---|