Cargando…
The Entropy-Based Time Domain Feature Extraction for Online Concept Drift Detection
Most of time series deriving from complex systems in real life is non-stationary, where the data distribution would be influenced by various internal/external factors such that the contexts are persistently changing. Therefore, the concept drift detection of time series has practical significance. I...
Autores principales: | Ding, Fengqian, Luo, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514531/ http://dx.doi.org/10.3390/e21121187 |
Ejemplares similares
-
Adaptive Online Sequential ELM for Concept Drift Tackling
por: Budiman, Arif, et al.
Publicado: (2016) -
Mechanical Fault Diagnosis of a High Voltage Circuit Breaker Based on High-Efficiency Time-Domain Feature Extraction with Entropy Features
por: Qi, Jiajin, et al.
Publicado: (2020) -
Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy
por: Zhou, Xiaolin, et al.
Publicado: (2014) -
Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine
por: Ma, Zhiyuan, et al.
Publicado: (2018) -
Driftage: a multi-agent system framework for concept drift detection
por: Vieira, Diogo Munaro, et al.
Publicado: (2021)