Cargando…

The Eigenvalue Complexity of Sequences in the Real Domain

The eigenvalue is one of the important cryptographic complexity measures for sequences. However, the eigenvalue can only evaluate sequences with finite symbols—it is not applicable for real number sequences. Recently, chaos-based cryptography has received widespread attention for its perfect dynamic...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Lingfeng, Xiang, Hongyue, Li, Renzhi, Hu, Hanping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514538/
http://dx.doi.org/10.3390/e21121194
Descripción
Sumario:The eigenvalue is one of the important cryptographic complexity measures for sequences. However, the eigenvalue can only evaluate sequences with finite symbols—it is not applicable for real number sequences. Recently, chaos-based cryptography has received widespread attention for its perfect dynamical characteristics. However, dynamical complexity does not completely equate to cryptographic complexity. The security of the chaos-based cryptographic algorithm is not fully guaranteed unless it can be proven or measured by cryptographic standards. Therefore, in this paper, we extended the eigenvalue complexity measure from the finite field to the real number field to make it applicable for the complexity measurement of real number sequences. The probability distribution, expectation, and variance of the eigenvalue of real number sequences are discussed both theoretically and experimentally. With the extension of eigenvalue, we can evaluate the cryptographic complexity of real number sequences, which have a great advantage for cryptographic usage, especially for chaos-based cryptography.