Cargando…
Application of Continuous Wavelet Transform and Convolutional Neural Network in Decoding Motor Imagery Brain-Computer Interface
The motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has been receiving attention from neural engineering researchers and is being applied to various rehabilitation applications. However, the performance degradation caused by motor imagery EEG with very low singl...
Autores principales: | Lee, Hyeon Kyu, Choi, Young-Seok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514543/ http://dx.doi.org/10.3390/e21121199 |
Ejemplares similares
-
A New Approach for Motor Imagery Classification Based on Sorted Blind Source Separation, Continuous Wavelet Transform, and Convolutional Neural Network
por: Ortiz-Echeverri, César J., et al.
Publicado: (2019) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces
por: Roy, Sujit, et al.
Publicado: (2020) -
Motor Imagery Classification for Brain Computer Interface Using Deep Convolutional Neural Networks and Mixup Augmentation
Publicado: (2022) -
Overlapping filter bank convolutional neural network for multisubject multicategory motor imagery brain-computer interface
por: Luo, Jing, et al.
Publicado: (2023)