Cargando…
Learning from Both Experts and Data
In this work, we study the problem of inferring a discrete probability distribution using both expert knowledge and empirical data. This is an important issue for many applications where the scarcity of data prevents a purely empirical approach. In this context, it is common to rely first on an a pr...
Autores principales: | Besson, Rémi, Le Pennec, Erwan, Allassonnière, Stéphanie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514553/ http://dx.doi.org/10.3390/e21121208 |
Ejemplares similares
-
Spatiotemporal Dynamic Simulation of Acute Perfusion/Diffusion Ischemic Stroke Lesions Evolution: A Pilot Study Derived from Longitudinal MR Patient Data
por: Rekik, Islem, et al.
Publicado: (2013) -
Understanding the Variability in Graph Data Sets through Statistical Modeling on the Stiefel Manifold
por: Mantoux, Clément, et al.
Publicado: (2021) -
Spatio-temporal mixture process estimation to detect dynamical changes in population
por: Pruilh, Solange, et al.
Publicado: (2022) -
DRG grouping by machine learning: from expert-oriented to data-based method
por: Liu, Xiaoting, et al.
Publicado: (2021) -
Expert patients: learning from HIV
por: Cooke, Molly
Publicado: (2011)