Cargando…
Improving Neural Machine Translation by Filtering Synthetic Parallel Data
Synthetic data has been shown to be effective in training state-of-the-art neural machine translation (NMT) systems. Because the synthetic data is often generated by back-translating monolingual data from the target language into the source language, it potentially contains a lot of noise—weakly pai...
Autores principales: | Xu, Guanghao, Ko, Youngjoong, Seo, Jungyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514558/ http://dx.doi.org/10.3390/e21121213 |
Ejemplares similares
-
Pseudotext Injection and Advance Filtering of Low-Resource Corpus for Neural Machine Translation
por: Adjeisah, Michael, et al.
Publicado: (2021) -
Machine translation with minimal reliance on parallel resources
por: Tambouratzis, George, et al.
Publicado: (2017) -
Substructure-based neural machine translation for retrosynthetic prediction
por: Ucak, Umit V., et al.
Publicado: (2021) -
Translating Akkadian to English with neural machine translation
por: Gutherz, Gai, et al.
Publicado: (2023) -
Experiment of RF feedback using an improved parallel comb-filter
por: Yoshimoto, S, et al.
Publicado: (1996)