Cargando…
Alterations of Cardiovascular Complexity during Acute Exposure to High Altitude: A Multiscale Entropy Approach
Stays at high altitude induce alterations in cardiovascular control and are a model of specific pathological cardiovascular derangements at sea level. However, high-altitude alterations of the complex cardiovascular dynamics remain an almost unexplored issue. Therefore, our aim is to describe the al...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514569/ http://dx.doi.org/10.3390/e21121224 |
_version_ | 1783586618171457536 |
---|---|
author | Faini, Andrea Caravita, Sergio Parati, Gianfranco Castiglioni, Paolo |
author_facet | Faini, Andrea Caravita, Sergio Parati, Gianfranco Castiglioni, Paolo |
author_sort | Faini, Andrea |
collection | PubMed |
description | Stays at high altitude induce alterations in cardiovascular control and are a model of specific pathological cardiovascular derangements at sea level. However, high-altitude alterations of the complex cardiovascular dynamics remain an almost unexplored issue. Therefore, our aim is to describe the altered cardiovascular complexity at high altitude with a multiscale entropy (MSE) approach. We recorded the beat-by-beat series of systolic and diastolic blood pressure and heart rate in 20 participants for 15 min twice, at sea level and after arrival at 4554 m a.s.l. We estimated Sample Entropy and MSE at scales of up to 64 beats, deriving average MSE values over the scales corresponding to the high-frequency (MSE(HF)) and low-frequency (MSE(LF)) bands of heart-rate variability. We found a significant loss of complexity at heart-rate and blood-pressure scales complementary to each other, with the decrease with high altitude being concentrated at Sample Entropy and at MSE(HF) for heart rate and at MSE(LF) for blood pressure. These changes can be ascribed to the acutely increased chemoreflex sensitivity in hypoxia that causes sympathetic activation and hyperventilation. Considering high altitude as a model of pathological states like heart failure, our results suggest new ways for monitoring treatments and rehabilitation protocols. |
format | Online Article Text |
id | pubmed-7514569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75145692020-11-09 Alterations of Cardiovascular Complexity during Acute Exposure to High Altitude: A Multiscale Entropy Approach Faini, Andrea Caravita, Sergio Parati, Gianfranco Castiglioni, Paolo Entropy (Basel) Article Stays at high altitude induce alterations in cardiovascular control and are a model of specific pathological cardiovascular derangements at sea level. However, high-altitude alterations of the complex cardiovascular dynamics remain an almost unexplored issue. Therefore, our aim is to describe the altered cardiovascular complexity at high altitude with a multiscale entropy (MSE) approach. We recorded the beat-by-beat series of systolic and diastolic blood pressure and heart rate in 20 participants for 15 min twice, at sea level and after arrival at 4554 m a.s.l. We estimated Sample Entropy and MSE at scales of up to 64 beats, deriving average MSE values over the scales corresponding to the high-frequency (MSE(HF)) and low-frequency (MSE(LF)) bands of heart-rate variability. We found a significant loss of complexity at heart-rate and blood-pressure scales complementary to each other, with the decrease with high altitude being concentrated at Sample Entropy and at MSE(HF) for heart rate and at MSE(LF) for blood pressure. These changes can be ascribed to the acutely increased chemoreflex sensitivity in hypoxia that causes sympathetic activation and hyperventilation. Considering high altitude as a model of pathological states like heart failure, our results suggest new ways for monitoring treatments and rehabilitation protocols. MDPI 2019-12-15 /pmc/articles/PMC7514569/ http://dx.doi.org/10.3390/e21121224 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Faini, Andrea Caravita, Sergio Parati, Gianfranco Castiglioni, Paolo Alterations of Cardiovascular Complexity during Acute Exposure to High Altitude: A Multiscale Entropy Approach |
title | Alterations of Cardiovascular Complexity during Acute Exposure to High Altitude: A Multiscale Entropy Approach |
title_full | Alterations of Cardiovascular Complexity during Acute Exposure to High Altitude: A Multiscale Entropy Approach |
title_fullStr | Alterations of Cardiovascular Complexity during Acute Exposure to High Altitude: A Multiscale Entropy Approach |
title_full_unstemmed | Alterations of Cardiovascular Complexity during Acute Exposure to High Altitude: A Multiscale Entropy Approach |
title_short | Alterations of Cardiovascular Complexity during Acute Exposure to High Altitude: A Multiscale Entropy Approach |
title_sort | alterations of cardiovascular complexity during acute exposure to high altitude: a multiscale entropy approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514569/ http://dx.doi.org/10.3390/e21121224 |
work_keys_str_mv | AT fainiandrea alterationsofcardiovascularcomplexityduringacuteexposuretohighaltitudeamultiscaleentropyapproach AT caravitasergio alterationsofcardiovascularcomplexityduringacuteexposuretohighaltitudeamultiscaleentropyapproach AT paratigianfranco alterationsofcardiovascularcomplexityduringacuteexposuretohighaltitudeamultiscaleentropyapproach AT castiglionipaolo alterationsofcardiovascularcomplexityduringacuteexposuretohighaltitudeamultiscaleentropyapproach |