Cargando…

A Novel Approach to Support Failure Mode, Effects, and Criticality Analysis Based on Complex Networks

Failure Mode, Effects and Criticality Analysis (FMECA) is a method which involves quantitative failure analysis. It systematically examines potential failure modes in a system, as well as the components of the system, to determine the impact of a failure. In addition, it is one of the most powerful...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lixiang, Dai, Wei, Luo, Guixiu, Zhao, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514574/
http://dx.doi.org/10.3390/e21121230
Descripción
Sumario:Failure Mode, Effects and Criticality Analysis (FMECA) is a method which involves quantitative failure analysis. It systematically examines potential failure modes in a system, as well as the components of the system, to determine the impact of a failure. In addition, it is one of the most powerful techniques used for risk assessment and maintenance management. However, various drawbacks are inherent to the classical FMECA method, especially in ranking failure modes. This paper proposes a novel approach that uses complex networks theory to support FMECA. Firstly, the failure modes and their causes and effects are defined as nodes, and according to the logical relationship between failure modes, and their causes and effects, a weighted graph is established. Secondly, we use complex network theory to analyze the weighted graph, and the entropy centrality approach is applied to identify influential nodes. Finally, a real-world case is presented to illustrate and verify the proposed method.