Cargando…
Detecting Causality in Multivariate Time Series via Non-Uniform Embedding
Causal analysis based on non-uniform embedding schemes is an important way to detect the underlying interactions between dynamic systems. However, there are still some obstacles to estimating high-dimensional conditional mutual information and forming optimal mixed embedding vector in traditional no...
Autores principales: | Jia, Ziyu, Lin, Youfang, Jiao, Zehui, Ma, Yan, Wang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514578/ http://dx.doi.org/10.3390/e21121233 |
Ejemplares similares
Ejemplares similares
-
Non-Uniform Embedding Scheme and Low-Dimensional Approximation Methods for Causality Detection
por: Papana, Angeliki
Publicado: (2020) -
Normalized Multivariate Time Series Causality Analysis and Causal Graph Reconstruction
por: Liang, X. San
Publicado: (2021) -
Deep Multivariate Time Series Embedding Clustering via Attentive-Gated Autoencoder
por: Ienco, Dino, et al.
Publicado: (2020) -
Connectivity Analysis for Multivariate Time Series: Correlation vs. Causality
por: Papana, Angeliki
Publicado: (2021) -
Evaluation of Directed Causality Measures and Lag Estimations in Multivariate Time-Series
por: Heyse, Jolan, et al.
Publicado: (2021)