Cargando…
Probabilistic Modeling with Matrix Product States
Inspired by the possibility that generative models based on quantum circuits can provide a useful inductive bias for sequence modeling tasks, we propose an efficient training algorithm for a subset of classically simulable quantum circuit models. The gradient-free algorithm, presented as a sequence...
Autores principales: | Stokes, James, Terilla, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514580/ http://dx.doi.org/10.3390/e21121236 |
Ejemplares similares
-
Probabilistic modelling /
por: Mitrani, I.
Publicado: (1998) -
Predicting
Drug–Target Interactions Using Probabilistic
Matrix Factorization
por: Cobanoglu, Murat Can, et al.
Publicado: (2013) -
Predicting the Effects of Drug Combinations Using Probabilistic Matrix Factorization
por: Nafshi, Ron, et al.
Publicado: (2021) -
Probabilistic Relative Entropy in Homogenization of Fibrous Metal Matrix Composites (MMCs)
por: Kamiński, Marcin
Publicado: (2023) -
Combining probabilistic forecasts of COVID-19 mortality in the United States
por: Taylor, James W., et al.
Publicado: (2023)