Cargando…
Using High-Frequency Entropy to Forecast Bitcoin’s Daily Value at Risk
In this paper we investigate the ability of several econometrical models to forecast value at risk for a sample of daily time series of cryptocurrency returns. Using high frequency data for Bitcoin, we estimate the entropy of intraday distribution of logreturns through the symbolic time series analy...
Autores principales: | Pele, Daniel Traian, Mazurencu-Marinescu-Pele, Miruna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514585/ https://www.ncbi.nlm.nih.gov/pubmed/33266818 http://dx.doi.org/10.3390/e21020102 |
Ejemplares similares
-
Modeling Expected Shortfall Using Tail Entropy
por: Pele, Daniel Traian, et al.
Publicado: (2019) -
Forecasting Bitcoin Trends Using Algorithmic Learning Systems
por: Cohen, Gil
Publicado: (2020) -
Forecasting mid-price movement of Bitcoin futures using machine learning
por: Akyildirim, Erdinc, et al.
Publicado: (2021) -
Time-series forecasting of Bitcoin prices using high-dimensional features: a machine learning approach
por: Mudassir, Mohammed, et al.
Publicado: (2020) -
A differential evolution-based regression framework for forecasting Bitcoin price
por: Jana, R. K., et al.
Publicado: (2021)