Cargando…
Novel Entropy and Rotation Forest-Based Credal Decision Tree Classifier for Landslide Susceptibility Modeling
Landslides are a major geological hazard worldwide. Landslide susceptibility assessments are useful to mitigate human casualties, loss of property, and damage to natural resources, ecosystems, and infrastructures. This study aims to evaluate landslide susceptibility using a novel hybrid intelligence...
Autores principales: | He, Qingfeng, Xu, Zhihao, Li, Shaojun, Li, Renwei, Zhang, Shuai, Wang, Nianqin, Pham, Binh Thai, Chen, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514589/ https://www.ncbi.nlm.nih.gov/pubmed/33266822 http://dx.doi.org/10.3390/e21020106 |
Ejemplares similares
-
Binary Credal Classification Under Sparsity Constraints
por: Basu, Tathagata, et al.
Publicado: (2020) -
Credal decision tree based novel ensemble models for spatial assessment of gully erosion and sustainable management
por: Arabameri, Alireza, et al.
Publicado: (2021) -
Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques
por: Chang, Kuan-Tsung, et al.
Publicado: (2019) -
Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping
por: Shirzadi, Ataollah, et al.
Publicado: (2018)